Process Safety Risk Assessment

Is there a better way?

Theo Reindorp

theoreindorp@hotmail.com www.EPSC.org

Process Safety Risk Assessment Do we need a better way?

- Is our process safety performance good enough?
- Is safety still keeping us awake at night?
- Have we eliminated major incidents yet?

History of Process Safety risk assessment

HAZOP Study

The method is universal and works well...or does it?

Risk Assessment Consistency

- Ensuring consistent levels of risk control across multiple units, plants and facilities
 - Everywhere the same low level of residual risk
 - which starts with similar conclusions on the risks, meaning
 - Similar plants will have similar HAZOPS outcomes, which requires...
 - For any given facility, your HAZOP teams in China (for example) will come to the same conclusions as your teams in Germany

• Do they?

HAZOP results across teams

- Isolated HAZOP teams come to quite different conclusions on scenarios and especially consequences
 - (international) review sessions or networks are organised around a limited number of super-specialists
 - Inadequately protected risks are found, over-engineering is discovered

Why is HAZOP not more consistent?

HAZOP Method

- Multi-disciplinary team
 - Expert study leader
 - Engineer
 - Operations staff
 - Maintenance
- Various methodologies
 - Guide word etc

Team is established based on need *and* availability

Team is expected to look creatively at what *could happen*

Why is creativity so important?

Creativity: why is it important?

- Creativity in the HAZOP teams allows us to
 - make up for missing or not found process data
 - Avoid reading and understanding an unmanageable amount of data
 - avoid applying lots of complex formulas
 - overcome lack of understanding
 - guess effects
- If equipment & process data is available, deviations are surely a matter of calculation?

Process Safety Innovation

- What about Industry 4.0?
- Can the HAZOP be automated?

- Do away with all the multi-disciplinary meeting
- No input facts, no output
- same input, same output

RAST

- Risk Analysis Screening Tool
- Uses 'basic' scientific and engineering principles
- References public available information sources
- 'Automated' screening of process safety scenarios or a given unit operation

	Scenario Type	Scenario Comments	Parameters and Deviation	Initiating Event (Cause)	Initiating Ev
_	Drain or Vent Valve Open	Drain or Vent Valve left open following infrequent maintenance, purging or cleaning	Flow-Loss of Containment	Human Failure Action once per quarter or less	Operator leaves Dra infrequen
_	Excessive Heat Input - Heat Transfer	Vapor Pressure plus pad gas exceeds Maximum Allowable Working Pressure or Relief Set Pressure at Ambient or Heating Media Temperature	Pressure-High	BPCS Instrument Loop Failure	Failure o
	Excessive Heat Input - Mechanical	Vapor Pressure plus pad gas exceeds Maximum Allowable Working Pressure or Relief Set Pressure at Maximum Temperature from Mechanical Energy Input	Pressure-High	Human Failure Action once per quarter or less	Agitation or Pump Re extended time allowing
	Excessive Heat Input - Pool Fire Exposure	Vapor Pressure exceeds Relief Set or Burst Pressure from Pool Fire Exposure	Pressure-High	IEF=2 as determined by Process Safety	Leak of Flammable Ma Flash Point
•	Ignitable Headspace	Chemical is Flammable or Combustible: Maximum Operating, Mechanical Energy or Heating Media Temperature exceeds Flash Point less 5 C	Composition-Wrong Concentration	BPCS Instrument Loop Failure	Failure of Pressu Atmosp
Mechanical Integrity Failure -		Largest Pipe or Nozzle Size less than	Flow-Loss of	IEF=4 as determined by Process Safety	Failure from co
	Extremely Large Mechanical Integrity Failure - Medium	Extremely Large Hole Size Mechanical Integrity Loss of Containment for Medium Hole Size	Containment Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from co
	Mechanical Integrity Failure - Very Large	Mechanical Integrity Loss of Containment for Very Large Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from co
Mechanical Integrity Failure - Very		Mechanical Integrity Loss of Containment	Flow-Loss of	IEF=3 as determined by Process Safety	Failure from co

	Incident	Outcome		is-no	- pul	£ .	Chei
				•	•	۲	S
	Drain or Vent Leak	Flash Fire or Fireball					
	Vapor Relief Vent - Heat Transfer	Flash Fire or Fireball, Building Explosion					
	Equipment Rupture at Saturation Temperature	Flash Fire or Fireball, Building Explosion, Equipment Explosion					
è	Vapor Relief Vent - Mechanical Energy	Flash Fire or Fireball					

Towards better risk assessment

- Ongoing validation of results
 - reference point is existing multi-disciplinary HAZOP
 - already a powerful study normalisation tool

Provides a starting point for and expert team

- Can be applied in the cyclic review process
 - genuinely new scenarios identified

Interested in joining the project?

Theo.Reindorp@homtail.com office@epsc.be